SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Regular & Supplementary Examinations February-2024 SOIL MECHANICS

/ · · · · · 1	70 1	.)
(Agricultural	Hnameet	rın (t
(Agricultural	Liiginco	шқ
(0-	0	0,

Time: 3 Hours

Max. Marks: 60

6M

6M

12M

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- L1 **CO1** a Briefly explain different types of soil structures which can occur in nature.
 - b Define the terms void ratio, specific gravity of particles, degree of saturation and dry density.

CO₁

L3 **12M** CO₁

L1

A test for the relative density of soil in place was performed by digging a small hole in the soil. The volume of the hole was 400 ml and the moist weight of the excavated soil was 9 N. After oven drying the weight was 7.8 N. Of the dried soil, 4N was poured into a vessel in a very loose state, and its volume was found to be 270 ml. The same wight of soil when vibrated and tamped had a volume of 200 ml. Determine the relative density.

UNIT-II

Compute the total, effective and pore pressure at a depth of 20 m below the bottom of a lake 6 m deep. The bottom of lake consists of soft clay with a thickness of more than 20 m. The average water content of the clay is 35% and the specific gravity of the soil may be assumed to be 2.65.

CO₂ L3

6 m Water Lake bottom Soft clay 20 m w = 0.35G = 2.65

Figure 3 – Lake Profile

OR

CO₂ L2 Draw the neat sketch of Variable Head Permeameter and derive 4 the equation for determining coefficient of permeability.

UNIT-III

CO₄ L1**6M** a Elaborate on factors affecting compaction. b Describe the methods used in field for compaction. CO₄ L1 **6M** OR

A sample of soil was prepared by mixing a quantity of dry soil with 6 10% by mass of water. Find the mass of this wet mixture required to produce a cylindrical, compacted specimen of 15 cm diameter and 12.5 cm deep and having 6% aircontent. Find also the void ratio and the dry density of the specimen if G = 2.68.

12M

12M

L3

CO4

				T -	
		UNIT-IV		43	
7	a	Describe various stages of consolidation of soils.	CO ₅	L1	6M
	b	Differentiate between normally consolidated and the	CO ₅	L2	6M
		overconsolidated soils. How would you determine the preconsolidation pressure?			
8		Define the following items:	CO5	L1	12M
		(i) Coefficient of compressibility			
		(ii) Coefficient of volume change			
		(iii)Compression index			
		(iv)Expansion index			
		(v) Recompression index			
		UNIT-V			
9	a	Explain Mohr-Coulomb theory and draw the failure envelope.	CO ₆	L1	6M
	b	Sketch the stress-strain relationship for dense and loose sand.	CO6	L1	6M
		OR			
10	a	Discuss the shear strength characteristics of cohesionless soils and cohesive soils.	CO6	L1	6M
	b	A series of direct shear tests was conducted on a soil, each test was carried out till the sample failed. The following results were obtained.	CO6	L3	6M

Sample	1	2	3
No.	15	20	15
Normal stress (kN/m ²)	15	30	45
Shear stress (kN/m²)	18	25	32

Determine the cohesion intercept and the angle of shearing resistance.

*** END ***